Use vectors to describe position and its variation in 2-d

A directed quantity can be graphically related to its x-component and its y-component using a drawing of a right triangle.

Vectors

Representations of \vec{A}

The defining characteristics of a vector are its magnitude (length) and its direction (angle).

Ex. 5 m in a direction 37° above the +x direction

Cartesian components

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}}$$
$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$$

$$A = |\vec{\mathbf{A}}| = \sqrt{A_x^2 + A_x^2}$$
$$\tan \theta = \frac{A_y}{A_x}$$

Vectors can be multiplied by scalars

Multiply a vector by a scalar by multiplying its components individually by that scalar. Multiplication by a negative sign reverses the direction of each non-zero component.

Vectors can be subtracted

Subtract a vector by adding its negative.

$$\vec{\mathbf{A}} - \vec{\mathbf{B}} := \vec{\mathbf{A}} + \left(-\vec{\mathbf{B}} \right)$$

Vectors can be added

Vector addition is head-to-tail

Vector	x-comp.	y-comp.
Ā	A_{x}	A_y
$\vec{\mathbf{B}}$	B_{χ}	$B_{\mathcal{Y}}$
$\overrightarrow{A} + \overrightarrow{B}$	$A_x + B_x$	$A_y + B_y$

Relative velocity

$$\vec{\mathbf{v}}_{\mathrm{BS,AVG}} \Delta t = \vec{\mathbf{v}}_{\mathrm{BW,AVG}} \Delta t + \vec{\mathbf{v}}_{\mathrm{WS,AVG}} \Delta t$$
$$\vec{\mathbf{v}}_{\mathrm{BS,AVG}} = \vec{\mathbf{v}}_{\mathrm{BW,AVG}} + \vec{\mathbf{v}}_{\mathrm{WS,AVG}}$$

Velocity	x-comp.	y-comp.
$\vec{\mathbf{v}}_{BW,AVG}$	$v_{\mathrm{BW,x,AVG}}$	$v_{ ext{BW,y,AVG}}$
$\vec{v}_{\text{WS,AVG}}$	$v_{\mathrm{WS},x,\mathrm{AVG}}$	$v_{ m WS,y,AVG}$
$\vec{\mathbf{v}}_{RSAVG}$	$v_{\rm RW,rAVG} + v_{\rm WS,rAVG}$	$v_{\rm RWvAVG} + v_{\rm WSvAVG}$